点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:亿丰彩票-亿丰彩票
首页>文化频道>要闻>正文

亿丰彩票-亿丰彩票

来源:亿丰彩票2024-01-10 17:48

  

北京西城今年计划再新增义务教育学位1万个******

  中新网北京1月6日电 (杜燕徐婧)2022年,北京市西城区共新增义务教育学位1万个。2023年,西城区将继续通过区域资源调整,区内外学位联动,推进学位保障工作,计划新增义务教育学位1万个。这是记者今天从北京市西城区两会上了解到的。

  优质均衡发展迈出新步伐

  北京市西城区委教育工委、区教委相关负责人介绍,2022年,北京市西城区围绕“巩固教育高原、打造教育高峰、做有温度的西城教育”的目标,守正创新,攻艰克难,团结奋进,在扩大优质资源供给、深入推进双减、加强教师队伍建设等方面取得明显成绩,优质均衡发展迈出新步伐。

  2022年,北京市西城区共新增义务教育学位1万个。每个学区各增加2所初中学区派位学校,每个学区初中派位学校达到10所。

  西城区启动19所“小而精”“小而美”特色学校建设,通过区领导联系学校、干部教师流动、教育教学质量提升、校园文化凝练、“大师营”等系列举措,推进这些规模较小的学校特色发展、高质量提升,构建美美与共、各具特色的教育生态,整体推动西城教育高水平优质均衡发展。

  西城区启动“教师成长关爱工程”,涵盖四大方面16条举措,以广大教师最关心、最直接、最现实的问题为突破口,在提升师德素养、促进专业成长、创新激励机制、关爱身心发展等方面提出了一系列工作机制和有效措施。

  在双减方面,通过推进作业质量提升工程、智学服务平台建设工程等,加强课堂教学研究,促进提质增效,丰富课后服务供给等,将双减工作进一步做深做实。同时,持续加强民办机构治理监管,防止问题反弹。

  负责人表示,2023年,北京市西城区将进一步扩大优质教育资源覆盖面,继续通过区域资源调整,区内外学位联动,推进学位保障工作,计划新增义务教育学位1万个。

  五育并举促进学生全面成长

  北京市西城区将进一步实施“一校一案”,系统做好学校德育体系的建构,夯实德育工作的实效性。打造中小学一体化教师育德能力平台——“班主任节”,继续组织好“讲述育人故事”活动、区级优秀班主任、市级“紫禁杯”“我最喜爱的班主任”评选以及德育干部协作组交流等工作,加强德育队伍建设,提升全员育德水平。

  西城区将通过开展“见字如面”、“西城区开学一课”等主题教育活动,培育学生的爱国情怀。

  西城区将配齐劳动教育必修课专职教师,完善劳动教育评价体系,以劳动教育目标、内容要求为依据,将过程性评价和结果性评价结合起来,健全和完善学生劳动素养评价标准。同时,将全面加强和改进学校体育、美育工作。

  全力打造“小而精”“小而美”学校

  负责人表示,2023年,西城区将继续推进6所中学“小而精”和13所小学“小而美”工程,帮助学校全面提升教育教学环境和质量,实现内涵发展。积极开展多维度工作视导,通过专题研讨、校长论坛、学校展示等机会为学校“小而美”“小而精”建设提供展示平台。

  北京市西城区教育部门将进一步加强调研,了解学校在“小而美”“小而精”项目上的建设需求,协调资源,帮助学校解决急难问题,实现学校高质量发展;加强精品意识,将项目建设与学校整体办学相结合,发挥学校内在驱动力,通过精品项目引领、学校全方位发力、教委全过程管理,推动学校发展迈上新的台阶,办老百姓满意的学校。

  持续推进双减工作深入开展

  西城区教育部门将进一步加强指导和服务,统筹各方力量,推进项目合作,为学校补充课后服务课程资源,丰富课后服务课程供给,提高课后服务质量。

  各学校将进一步做好课堂教学提质增效。通过开展“课堂+作业+评价”的实践与研究,指导教师在课堂教学内容、教学方式、信息技术应用、课堂教学评价、作业设计等方面不断提升,全面提升课堂教学质量。通过加强校际间交流,达到智慧共享、共同提升。

  全面提升教育信息化水平

  西城区教育部门将重点推进西城区云课堂评价系统建设项目,完善校园教学智能设施和数据采集体系建设,实现区域教学过程性评价能力提升。完成线上作业平台、英语课堂互动教学、五育融合评价体系等重点项目建设。

  北京市西城区将推进薄弱环节改造提升,增补完善各校校园信息化设施,包括校园有线网络、无线网络、电子班牌、数字广播、ip电话、直录播教室、英语听说教室基础环境。重点保障“小而美”“小而精”学校信息化环境提升。(完)

  西城区将以点带面推进智慧校园建设,持续提升信息化服务教育教学能力。积极为各类教育信息化试点示范创造有利条件,重点抓好智联教室试点项目建设和“智慧校园”融合应用示范基地建设。(完)

亿丰彩票

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

  相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

  你或身边人正在用的某些药物,很有可能就来自他们的贡献。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

  一、夏普莱斯:两次获得诺贝尔化学奖

  2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

  今年,他第二次获奖的「点击化学」,同样与药物合成有关。

  1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

  虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

  虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

  有机催化是一个复杂的过程,涉及到诸多的步骤。

  任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

  不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

  为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

  点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

  点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

  夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

  大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

  大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

  大自然的一些催化过程,人类几乎是不可能完成的。

  一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

   夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

  大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

  在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

  其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

  诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

  他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

  「点击化学」的工作,建立在严格的实验标准上:

  反应必须是模块化,应用范围广泛

  具有非常高的产量

  仅生成无害的副产品

  反应有很强的立体选择性

  反应条件简单(理想情况下,应该对氧气和水不敏感)

  原料和试剂易于获得

  不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

  可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

  反应需高热力学驱动力(>84kJ/mol)

  符合原子经济

  夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

  他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

  二、梅尔达尔:筛选可用药物

  夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

  他就是莫滕·梅尔达尔。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

  为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

  他日积月累地不断筛选,意图筛选出可用的药物。

  在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

  三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

  2002年,梅尔达尔发表了相关论文。

  夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  三、贝尔托齐西:把点击化学运用在人体内

  不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

  诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

  她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

  这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

  卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

  20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

  然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

  当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

  后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

  由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

  经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

  巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

  虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

  就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

  她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

  大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

  在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

  目前该药物正在晚期癌症病人身上进行临床试验。

  不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

  参考

  https://www.nobelprize.org/prizes/chemistry/2001/press-release/

  Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

  Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

  Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

  https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

  https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

  Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

  (文图:赵筱尘 巫邓炎)

[责编:天天中]
阅读剩余全文(

相关阅读

视觉焦点

  • 十大“不考研”也不影响就业的专业

  • 英超-前4和脸都不要了!阿森纳0-3莱斯特遭3连败

独家策划

推荐阅读
亿丰彩票老赖珍藏两个手机靓号 法院拍卖六十多万
2023-09-23
亿丰彩票医院飞身擒小偷!见义勇为的身影中又见退役军人
2023-09-08
亿丰彩票小伙一夜"爆负",工资卡欠款999亿
2023-11-18
亿丰彩票 收藏日本神社识别指南 秒变旅游达人
2023-10-31
亿丰彩票MSI明星云集世界冠军齐聚一堂
2024-01-10
亿丰彩票 5本意境优雅的经典诗词解析
2023-07-09
亿丰彩票油烟机该选顶吸还是侧吸
2023-09-06
亿丰彩票 北京《网络空间法治化治理白皮书》首次发布
2023-06-03
亿丰彩票Premiere CC 2018影视剪辑全实战
2023-06-02
亿丰彩票开心超人联盟之谜之城伽罗打算用音乐引出水怪神秘五大谜题之旅
2023-11-26
亿丰彩票漂流瓶里有“神仙”?真相让人哭笑不得
2024-01-18
亿丰彩票治愈系小假期过得不简单
2024-03-28
亿丰彩票央行4月29日不开展公开市场操作
2023-10-25
亿丰彩票人社部:一季度全国城镇新增就业324万人
2023-06-28
亿丰彩票《无名》:真实与虚构的迷宫中英雄的光辉照亮历史
2023-07-13
亿丰彩票立鸿鹄志 做奋斗者——写在五四运动一百周年之际
2023-11-02
亿丰彩票习近平主持中共中央政治局集体学习并发表重要讲话
2023-08-23
亿丰彩票 NINE PERCENT合体 现场对粉丝表白大送福利
2023-11-28
亿丰彩票IAEA称伊朗更改福尔多核设施离心机互连方式 伊朗否认
2023-06-04
亿丰彩票收评:创业板指下行跌2.55% 近300股跌停
2023-05-23
亿丰彩票搜救犬水灾救援22天殉职 主人:它太累了
2024-04-03
亿丰彩票 揭蛊瑞幸咖啡:首席营销官杨飞操盘“疯狂营销”
2023-12-08
亿丰彩票房价泡沫破灭 加拿大人付出代价:民众借钱买食物
2023-07-26
亿丰彩票Selina究竟有没有跟张轩睿在一起?
2023-09-28
加载更多
亿丰彩票地图